Nitrogen fixation and nifH diversity in human gut microbiota

نویسندگان

  • Katsura Igai
  • Manabu Itakura
  • Suguru Nishijima
  • Hirohito Tsurumaru
  • Wataru Suda
  • Takumi Tsutaya
  • Eriko Tomitsuka
  • Kiyoshi Tadokoro
  • Jun Baba
  • Shingo Odani
  • Kazumi Natsuhara
  • Ayako Morita
  • Minoru Yoneda
  • Andrew R. Greenhill
  • Paul F. Horwood
  • Jun-ichi Inoue
  • Moriya Ohkuma
  • Yuichi Hongoh
  • Taro Yamamoto
  • Peter M. Siba
  • Masahira Hattori
  • Kiwamu Minamisawa
  • Masahiro Umezaki
چکیده

It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A (15)N2 incorporation assay showed significant enrichment of (15)N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites.

Nitrogen fixation by the microorganisms in the gut of termites is one of the crucial aspects of symbiosis, since termites usually thrive on a nitrogen-poor diet. The phylogenetic diversity of the nitrogen-fixing organisms within the symbiotic community in the guts of various termite species was investigated without culturing the resident microorganisms. A portion of the dinitrogenase reductase ...

متن کامل

Environment-dependent distribution of the sediment nifH-harboring microbiota in the Northern South China Sea.

The South China Sea (SCS), the largest marginal sea in the Western Pacific Ocean, is a huge oligotrophic water body with very limited influx of nitrogenous nutrients. This suggests that sediment microbial N(2) fixation plays an important role in the production of bioavailable nitrogen. To test the molecular underpinning of this hypothesis, the diversity, abundance, biogeographical distribution,...

متن کامل

Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas

Ecological evidence suggests that heterotrophic diazotrophs fueled by organic carbon respiration in sediments play an important role in marine nitrogen fixation. However, fundamental knowledge about the identities, abundance, diversity, biogeography, and controlling environmental factors of nitrogen-fixing communities in open ocean sediments is still elusive. Surprisingly, little is known also ...

متن کامل

Molecular evidence for sediment nitrogen fixation in a temperate New England estuary

Primary production in coastal waters is generally nitrogen (N) limited with denitrification outpacing nitrogen fixation (N2-fixation). However, recent work suggests that we have potentially underestimated the importance of heterotrophic sediment N2-fixation in marine ecosystems. We used clone libraries to examine transcript diversity of nifH (a gene associated with N2-fixation) in sediments at ...

متن کامل

Nitrogen fixation by symbiotic and free-living spirochetes.

Spirochetes from termite hindguts and freshwater sediments possessed homologs of a nitrogenase gene (nifH) and exhibited nitrogenase activity, a previously unrecognized metabolic capability in spirochetes. Fixation of 15-dinitrogen was demonstrated with termite gut Treponema ZAS-9 and free-living Spirochaeta aurantia. Homologs of nifH were also present in human oral and bovine ruminal treponeme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016